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SUMMARY 

This study is concerned with the Green function of the theory of potential flow about a body in regular 
(time-harmonic) water waves in deep water, that is with the linearized velocity potential of the flow due to a 
source of pulsating strength at a fixed position below the free surface (or a pulsating flux across the free 
surface) of a quiescent infinitely deep sea. An asymptotic expansion and a convergent ascending-series 
expansion for the Green function are obtained from two alternative complementary 'near-field' and 'far-field' 
single-integral representations in terms of the exponential integral. The asymptotic expansion and the 
ascending series allow efficient numerical evaluation of the Green function for large and small distances, 
respectively, from the mirror image of the singularity (submerged source or free-surface flux) with respect to 
the mean sea surface. 

1. Introduction 

A classical and important problem in free-surface hydrodynamics is that of linearized potential 

flow about a body in regular (time-harmonic) water waves. Particular problems of practical 

interest encompassed in this general potential-flow problem are the usual problems of wave 

radiation, in which a rigid body is forced to oscillate about a mean position in otherwise calm 

water, and of wave diffraction by a rigid body held f'Lxed in a train of plane progressive waves. 

The problem of linearized motion of a freely floating rigid body in regular waves can be 

decomposed into such a wave-diffraction and six basic wave-radiation problems (corresponding 

to the six degrees of freedom of motion of an unrestrained rigid body), as is well known, and is 

explained in some detail in Wehausen [1 ] and Newman [2], for instance, where expressions for 

the wave force and moment and the coefficients of added mass and damping may also be 

found. 

The present study is concerned with the Green function of the theory of potential flow 

about a body in regular water waves in deep water, that is with the linearized velocity potential 

of the flow due to a source of pulsating strength at a fixed position below the free surface 

(or a pulsating flux across the free surface) of a quiescent infinitely deep sea. This function has 
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been studied extensively during the 1940s and early 1950s, notably by Kochin [3], Havelock 
[4, 5], Haskind [6, 7], John [8], Liu [9], Thorne [10], and MacCamy [11]. These studies are 
reviewed in Wehausen and Laitone [12], where several alternative integral representations of 
the Green function are listed. A convergent expansion of the Green function involving spherical 
harmonics is given in Ursell [ 13 ]. 

The advent of fast computers opening up the feasibility of numerical calculations for three- 
dimensional flows has caused a search of expressions for the Green function suited for efficient 
numerical evaluation. Thus, a modified form of the Haskind [7] expression for the Green 
function is given and used in Kim [14]. This modified Haskind expression was also used by 
Yeung [15], and was rederived by Hearn [16]. Recently, an integral representation for the 
Green function in terms of the exponential integral was obtained, independently and in 
different manners, by Guevel and Daubisse [17], Martin [18], and Noblesse [19]. Martin 
also gives asymptotic expansions of the Green function, and the study by Noblesse contains 
asymptotic expansions and convergent ascending series. 

The plan and main results of the present study of the Green function are now presented. 
The basic potential-flow problem of the linearized theory of flow about a body in regular 
water waves is formulated in Section 2; following Lighthill [20], the problem is formulated 
as an initial-value problem of the form indicated by equation (2.2a). In Section 3, the classical 
double-integral representations (3.10a,b) of the Green function are derived, in a usual manner 
by using a double Fourier transform with respect to the horizontal coordinates x and y. 

The field equation and boundary condition satisfied by the Green function are examined 
in detail in Section 4. Specifically, the Green function is shown to satisfy equations (4.3) or 
(4.4), depending on whether the pulsating singularity is fully submerged or on the mean sea 
surface, respectively. Equations (4.3) for a submerged source are well known. However, 
equations (4.4), corresponding to a flux across the mean sea surface, are proper in the limiting 
case when the singularity is exactly on the mean sea surface. These equations are important for 
the formulation of an integral equation for determining the velocity potential of flow about a 
body in regular waves, as is shown in [19] where a new integral equation indeed is obtained by 
using both equations (4.3) and (4.4). 

In Section 5, three alternative and complementary single-integral representations of the 
Green function are obtained from the two alternative double-integral representations (3.10a,b). 
These three single-integral representations of the Green function, expressed in the form of 
equation (5.1), are: (i) the 'Haskind integral representation' (5.8c), which is essentially identical 
to the expression obtained by Haskind [7], (ii) the 'near-field integral representation' (5.11), 
which has also been obtained (independently and in a different manner) by Guevel and 
Daubisse [17] and Martin [18], and (iii) the 'far-field integral representation' (5.21), which 
does not appear to have been given previously. 

The modified Haskind integral representation (5.8c) and the 'near-field representation' 
(5.11) are especially well suited for evaluating the function g(h, v) for small values of v and 
h, respectively. Indeed, in the limiting cases v = 0 and h = 0 the integrals in these integral 
representations vanish, and the function g(h, v) takes the simple forms given by equations 
(5.9) and (5.12), respectively. The near-field and far-field integral representations (5.11)and 
(5.21) are analogous to the single-integral representations of the Green function of ship 
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wave-resistance theory given in Noblesse [21]. The integral representations (5.11) and (5.21) 

are used in Sections 6 and 7 for obtaining a convergent ascending series, useful for evaluating 
the function g(h, v) for small and moderate values of d = (h 2 + v2) 1/2, and an asymptotic 

expansion useful for large and moderate values ofd .  
In Section 6, two complementary asymptotic expansions of the function g(h, v) for large 

and moderate values of d are obtained from the near-field and far-field integral representations 
(5.11) and (5.21). Comparison of these complementary expansions then yields the single 
expansion given by equations (6.17) and (6.17a,b). This asymptotic expansion is more general 
than the two asymptotic expansions for large values of  h and v given in [18]. In Section 7, a 
convergent ascending-series expansion of the function g(h, v) is obtained from the near-field 
integral representation (5.11). This ascending series, given by equations (7.7), (7.8) and (7.22), 
is useful for evaluating the function g(h, v) for small and moderate values of d. The above- 
mentioned asymptotic expansion and ascending series are the two main new results of the 

present study. 
These expansions are supplemented by two one-dimensional Taylor-series expansions useful 

for evaluating the function g(h, v) in the vicinity of  the axes h = 0 and v = 0. These series, 
obained from the near-field and the Haskind integral representations (5.11) and (5.8c), are 
given by equations (8.8) and (8.13) in Section 8. Finally, expressions for the gradient of the 

Green function are given in Section 9. In particular, the vertical derivative, Gz, of the Green 
function G can be directly expressed in terms of G, as is shown in expression (9.5). This 
expression, previously given in Martin [18], has been obtained here by following an idea used 
by Eggers [22] for the analogous problem of ship wave resistance. 

2. The problem of potential flow about a body in regular water waves 

The basic potential-flow problem of the linearized theory of flow about a body in regular water 

waves is briefly formulated in this section. A sea of  infinite depth and lateral extent is assumed, 
and water is regarded as homogeneous, incompressible (with density p), and inviscid. The only 
body force considered is that due to a uniform gravitational field (with acceleration g). Surface 
tension and free-surface nonlinearities are neglected. The flow is irrotational and thus can be 
represented by a velocity potential q)', which is a function of the Cartesian coordinates X(X, Y, 
Z)  and of the time T, i.e. q~'(X, T). The mean (undisturbed) free surface of the sea is taken as 
the plane Z = 0, with the Z-axis positive upwards. 

The linerized dynamic sea-surface boundary condition takes the well-known form 

gE'+~'T+P'/p = 0 on Z = O, 

where E'(X, Y, T) is the elevation of the free surface above or below its mean level Z = O, 
P'(X, Y, T) is the difference between the pressure at the free surface and the atmospheric 
pressure, and ~ - aq~'(X, Y, Z = O, T)/aT. For most problems of practical interest, the 
pressure at the sea surface is a constant equal to the atmospheric pressure, so that one then has 
P '  = O. In the presence of a fluid flux, Q'(X, Y, T) say, across the sea surface, the linearized 
kinematic sea-surface boundary condition takes the form 
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- Q '  • ~ = E~ ,  o n  Z = 0 ,  

where Q ' <  0 corresponds to fluid being sucked away across the free surface. While for all 

practical problems we have Q' = 0, it will be useful to allow a fluid flux across the free surface 

for determining the sea-surface condition satisfied by the Green function, as will be shown in 

Section 4. Elimination of the sea-surface elevation E '  between the foregoing dynamic and 

kinematic sea-surface conditions then yields the sea-surface boundary condition 

i•r t = 

g z + 07w  - -P~. /p- -gQ'  on Z = 0, (2.1) 

which thus involves the velocity potential ~ '  alone. 

In the present study, we are interested in flows that are simple harmonic in time, say with 
radiant frequency co (period 21r/co). As is well known, and is discussed for instance in Stoker 

[23], such free-surface gravity flows are not completely (uniquely) determined unless one 

imposes a 'radiation condition' expressing that waves at a sufficient distance away from the 

disturbance (for instance, a body) which created them must be like 'outgoing' progressive 

waves, i.e. like progressive waves moving away from the waves source. A convenient alternative 
approach, employed for instance in Lighthill [20], to the use of such a 'radiation condition' of 

'outgoing waves', consists in defining a time-harmonic flow as the limit - as the small positive 

auxiliary parameter e vanishes - of a flow defined by a velocity potential of the form 

qb'(X, T) = Re qb(X) exp [--ico(1 + i e )T] ,  (2.2a) 

where Re represents the real part. The sea-surface pressure and flux are similarly assumed to be 

of the form 

P ' ( X ,  Y, T) = ReP(X, Y) exp [--ico(1 + i e )T] ,  

Q ' ( X ,  Y, T) = Re Q(X,  Y)  exp [-ico(1 + i e )T] .  

(2.2b) 

(2.2c) 

In this alternative approach, one then is faced with a traditional 'initial-value problem', with the 

obvious initial conditions qb' = 0 and ~ = 0 for T = -- oo. Use of expressions (2.2a, b, c) into 
equation (2.1) then yields the following sea-surface boundary condition: 

g'~z -- w2( 1 + ie) 2cb = ko(1 + ie)P/p - g Q  on Z = 0, (2.3) 

for the 'spatial component' ~(X) of the actual potential ~ '  (X, T). 
It will be convenient to define adimensional variables in terms of 1/co as reference time and 

of some reference length L, from which the reference velocity coL, potential coL 2 , and pressure 
pw2L 2 can be readily formed. We thus define the adimensional variables 

t = coT, x = X/L ,  (o = ~/coL 2 , p = P/pco2L 2 , q = Q/coL. (2.4) 

In terms of these adimensional variables, the sea-surface condition (2.3) can be shown to become 
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(2.5) 

where f is the ' frequency parameter '  defmed as 

f = w2L/g. (2.5a) 

The ' frequency parameter '  f can obviously be made equal to unity by selecting the reference 
length L as g/co 2 . This choice of  reference length essentially corresponds to taking the length of  
the water waves as reference length, since we have g /w  2 = ~./2rr - with ;k the wavelength of  

plane progressive waves of  frequency co - from the 'dispersion relation' for water waves in deep 
water. In this choice of  reference length, the size of  the body causing the waves would however 
appear to vary with the frequency co (the body becoming small at low frequency and large at 
high frequency). An alternative (possibly more convenient for practical purposes) choice is to 
take the reference length L as a length characterizing the size of  the body,  which would thus 
remain the same at all frequencies. The length of  the waves, however, would then vary with the 
frequency (the waves being long at low frequency and short at high frequency). 

The basic potential-flow problem of  the llnearized theory of  flow about a body in regular 
water waves can now be briefly stated. As is well known, this problem consists in solving the 
Laplace equation 

V24~ = 0 in (d), (2.6a) 

subject to the boundary conditions specified below. The solution domain (d) in equation (2.6a) 
is the domain exterior to the body and bounded upwards by the mean sea surface, (a) say, 
which consists in the whole plane z = 0 if the body is fully submerged or in the portion of  the 
plane z = 0 exterior to the body in the case where the body pierces the free surface. On the 
mean sea surface (o), the sea-surface boundary condition (2.5) must be satisfied: 

~bz - - f (1  + ie)2¢ = if(1 + i e )p  - -q  on (o), (2.6b) 

where in fact we generally have p = 0 = q for the problem of  flow about a body.  The potential 
~b must vanish at infinity; specifically, we have the condition 

q~ = O(1/Ixl)  as Ix1-+°% (2.6c) 

expressing that q~ vanishes at least as fast as 1/Ixl as Ixl ~ ~.  Finally, on the body surface, (b) 
say, which actually consists only in the portion of  the body surface located below the plane 
z = 0 if the body pierces the sea surface, the potential q~ must satisfy the usual body boundary 
condition 

~b, given on (b), (2.6d) 

where ¢n = ~¢/~n -- V¢- n is the derivative of  ~ in the direction of  the unit normal n to (b). 
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The precise form taken by the expression for ¢,~ on (b) in particular problems, notably in the 
usual 'radiation' and 'diffraction' problems, may be found in various places in the literature, 
e.g. in Wehausen [1] and Newman [2]. 

3. Double-integral representations 

A well-known technique for solving a potential-flow problem such as the one defined above by 
equations (2.6a, b, c, d) in the general case of an arbitrarily shaped body, consists in formulating 
an integral equation for the potential ~b based on the use of a Green function satisfying all the 
boundary conditions of  the problem except the 'body condition', which is to be satisfied by 
means of the integral equation. The Green function, G(x; ~,f ,  e) say, appropriate to the present 
problem then is the solution of the problem defined by the following equations: 

V2G = 5 ( x - - ~ ) 8 ( y - - r ~ ) 8 ( z - - ~ ' )  in z < 0 ,  (3.1a) 

G z - f ( l + i e ) 2 G  = 0 on z = O, (3.1b) 

G = O(1/r) as r ~ ,  (3.1c) 

where 6 ( ) is the usual 'Dirac delta function', and r = Ix --~1 is the distance between the 'field 
point' x and the 'singular point' ~. 

A particular solution of the Poisson equation (3.1a) is given by 4rrG = -- l/r, as is well 
known and can readily be verified. The general solution of equation (3.1a)can thus be written 

a s  

4rrG (x; ~, f ,  e) = -- 1/r + H(x;  ~, f ,  e), (3.2) 

where the function H is regular harmonic in the lower half space z < 0, and evidently is to be 
determined from the boundary conditions (3.1b, c). Indeed, use of expression (3.2) into 
equations (3.1a, b, c) yields 

V2H = 0 in z < O ,  (3.3a) 

H z - - f ( 1  +ie )2n  = [az - - f (1  +ie)2](1/r) on z = O, (3.3b) 

H = O(1/r) as r ~ .  (3.3c) 

The above problem can be solved by using a double Fourier transform with respect to the 

horizontal coordinates x and y.  The double Fourier transform of the function H(x;  ~j, f ,  e) is 
denoted by H**(c~, ~, z; ~,f ,  e) and defined as 

1 
(3.4) 
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The corresponding Fourier transform of  the function 1]r is 

( l /r)** = ( l / k )  exp [ - -k l z  -- ~1 + i(ct~ +/3r/)] (3.5) 

where k = (a2 +/32)~/2 by definition, as may be verified. By taking the double Fourier trans- 

form with respect to x and y of  equations (3.3a,b,c),  we may then obtain the following 

'F ourier-transformed problem'  for the function H** (z; a,/3, ~, f ,  e): 

d2H**/dz 2 - - k 2 H  ** = 0 in z < 0, (3.6a) 

dH**/dz - - f (1  + ie)2H ** = -- [1 + f ( 1  + ie)2/k] e k~+ita~÷~n) on z = 0, (3.6b) 

H * * ~ 0  as z ~ - - ~ .  (3 .6c)  

The general solution of  the ordinary differential equation (3.6a) is H** = A exp (kz)  + B exp 
( - - k z ) ,  where A and B are arbitrary constants. The boundary condition (3.6c) shows that 
B = 0, and the constant A then can be determined from the sea-surface condition (3.6b). We 

thus may obtain 

H** - k + f ( 1  + ie) 2 lektZ+D÷i(a~+#n ) (3.7) 
k - - f ( l + i e )  2 k 

which can be expressed in the equivalent forms 

H** - 1 eh~Z+~)+i(c~+#n ) 2f(1 + i e )  ~ 1 ek~Z+~.)+i~,~+t3n) ' (3.7a) 
k k - - f ( l + i e )  2 k 

H** = lea(Z*D*ita~+an)  2 eU(Z÷¢)+i~÷#n)" (3.7b) 
k k - - f (1  + ie) ~ 

It may be seen from equation (3.5) that the first term on the right side of  equation (3.7b) is 
equal to the double Fourier transform (1/r ')** of  1/r', where r '  is defined as r' = (x '2 +y ,Z  + 
z'2)1/2 with x '  = x -- ~, y '  = y --  7, and z '  ~- z + ~. Thus, x'  ( x ' ,  y ' ,  z ' )  is the vector joining the 
mirror image of  the 'singularity' ~j with respect to the sea surface z = 0 to the 'field point '  x, 

and r '  is the distance between these two points. 
The function H(x ;  ~, f ,  e) may now be obtained by taking the inverse double Fourier trans- 

form of  the function H**(ct,/3, z; ~ , f ,  e), namely 

1 
(3.8) 

By using expressions (3.7a,b) for H** into equation (3.8), and by using the resulting expression 
for H into equation (3.2), we can then obtain the following alternative expressions for the 
Green function G(x;  ~ , f ,  e): 
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47rG = 
r 

1 
47rG . . . .  b - -  -- 

r 

f?~ f?~ da ke~z'-i(c~x'+~Y') I f(1 + ie) 2 d13 J , (3.9a) 

1 1 d~ da (3.9b) 
r '  zr k - - f ( 1  + ie) 2 " 

The Green function G(x;  ~ , f ,  e) obviously is axisymmetric about the vertical axis x = ~,y  = ~, 
so that we may take y ' = y - - r ~  as zero and replace x '=-x - -~  by p = ( x  '2 +y,2)1/2 in 
expressions (3.9a,b). Expression (3.9b) then becomes 

1 1 2 r o d {  3 f ? d a ( c t z e  z''c?÷#~''~-ipa 4nG = - - - - +  - 7 - -  (3.10a) 
r r zr + 132) u2 - - f ( 1  + ie) 2 " 

A more usual alternative expression is that which can be obtained by performing the substi- 
tution y '  = 0 and x '  =/9 in expression (3.9a), followed by a transformation from the Cartesian 
Fourier variables a and/3 to the polar variables k = (a 2 +/32) 1/2 and 0, specifically by perform- 

ing the change of variable a = k cos 0 and/3 = k sin 0. The resulting classical expression is 

1 1 2 t o  fo e(Z'-ipc°sO)k 4~G - f(1 + ie) 2 -- dO dk (3.10b) 
r r' 7r k-- f(1 +ie) 2" 

Expressions (3.10a,b) show that G (x; ~, f ,  e) actually is a function o f  only three space variables, 
namely p - (x ,2 + y ,2)1/2, z '  - z + ~, and (z -- ~-)2 which occurs in r - [p2 + (z -- ~-)2 ] 1/2. 

In Section 5, three alternative single-integral representations of  the Green function will be 
obtained from the two alternative double-integral representations (3.10a,b). The single-integral 
representations will then be used to obtain asymptotic expansions, a convergent ascending- 
series expansion, and one-dimensional Taylor-series expansions in Sections 6, 7, and 8, 
respectively. However, before proceeding with the derivation of  these expansions, we shall first 
examine the field equation and sea-surface boundary condition satisfied by the Green function, 
in the following section. 

4. Field equation and boundary condition satisfied by the Green function 

As is self-evident from equations (3.1a,b,c),  the physical significance of  the Green function 
G(x;  ~, f ,  e) is that Re G(x,  ~, f ,  e ) e x p  ( e - - i ) t  is the linearized velocity potential, at the 
'field point '  x ( x ,  y ,  z <~ 0) and at the time t, of  the flow caused by a submerged pulsating 
source of  strength Re exp (e -- i)r, -- oo <~ r <<. t, located at point ~(~, ~, ~" < 0). However, this 
well-known physical interpretation becomes ambiguous in the limiting case ~" = 0, since the 
source then is obviously no longer fully submerged. A natural complementary interpretation for 
this limiting case is to assume that  the outflow produced at point (g, ~, ~" = 0) now stems from 
a flux Re q ( x , y ) e x p  ( e - - i ) t ,  with q(x , y )  = 6(x - -~)6(y  --~), across the mean sea surface 

z = 0. Equations (2.6a,b,c) then suggest that the 'limit Green function'  Gz(x; ~, ~ , f ,  e) - - -G(x;  
~, 7, ~- -- 0 , f ,  e) must satisfy the following equations: 
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V:Gz = 0 in z < 0 ,  (4.1a) 

Gzz - - f (1  +ie)2Gz = - - 6 ( x - - ~ ) 6 ( y - - ~ )  on "z = 0, (4.1b) 

Gt = O(1/r) as r +  °°. (4.1c) 

A mathematical demonstration of the above physically motivated equations can readily be 
provided by verifying that the solution Gl(x; ~, ~7, f ,  e) of the problem defined by equations 
(4.1a,b,c) actually is identical to the 'limit Green function' obtained by replacing ~ by zero in 
the previously derived solution G(x; ~ , f ,  e) of the problem def'med by equations (3.1a,b,c). 
Problem (4.1) may be solved in the same manner as was used previously for solving problem 
(3.3), namely by using a double Fourier transform with respect to the horizontal coordinates x 
andy.  We may then obtain the 'Fourier-transformed' problem: 

d2G~*/dz 2 - k 2 G ~  * = 0 in z<O,  

dG~*/dz - - f (1  + ie)2Gp * = - exp [ i(at  +/3r/)]/2~r 

Gl** + 0  as z - ~ - - o %  

on z = 0, 

where Gt** is the double-Fourier transform of Gt, as is defined by formula (3.4). The solution 
of the above problem is given by 

Gt** = -- exp [kz + i ( ~  + ~r/)]/2rr[k - - f (1  + ie)2]. 

By taking the inverse double Fourier transform, as is given by formula (3.8), we can finally 

obtain 

- - l ~ ? ~ ? e  kz-i(''x'+~'') 
Gt(x;~,r~,f,e ) = 4rr---- 5 d~ da k-- f (1  + ie) 2' (4.2) 

which can readily be verified to be identical to the expression obtained by replacing ~" by zero 

in formula (3.9b). 
Conversely, it may be shown that the 'limit Green function' Gt given by expression (4.2) 

does in fact satisfy equations (4.1a,b,c). Verification of equations (4.1a) and (4.1c) can 
easily be checked. As for the sea-surface condition (4.1b), we have 

1 r" i,~x' \ [ 1  f?** . , ) 
Glz-- f (1 + ie)2G, = -- ~ J_ e- dct)~-~n e -'#r dfJ on z = O, 

from which we may obtain 

Gtz - - f (1  + ie)2Gl = - - 6 ( x ' ) ~ ( y ' )  = - - ~ ( x - - ~ ) ~ ( y - - r l )  on z = 0 

by virtue of the relations 
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1 : ~?® e iaXf (x )dx ,6 (x )  = ~-~f~ e-'aXda 

expressing the (well-known) fact that 6 (x) and 1 are Fourier transforms. 
It may thus be seen, in summary,  that the Green function G(x;  ~,f,  e) of the theory of  flow 

about a body in regular waves (where the limit e = + 0 is ultimately implied) satisfies the 
following equations: 

VZG = 6 ( x - - ~ ) 8 ( y - - ~ ) 6 ( z - - ~ )  in 

G z - f ( l + i e ) 2 G  = 0 on z = 0, 

G = O(1 / r )  as r ~ o %  

z < 0 ,  

if ~ ' < 0  

(4.3a) 

(4.3b) 

(4.3c) 

V2G = 0 in z < 0 ,  ~ (4.4a) 

G z - f ( l + i e ) 2 G  = - -6 (x - -~ )g (y - -77)  on z = 0, / if ~" = 0 (4.4b) 

G = O(1/r) as r ~ co. (4.4c) 

As was noted previously, the Green function only depends on the three space variables (x -- 

~)2 + (y  _ 7)2, (z -- ~.)2, and (z + ~'), so that this function is invariant under the substitution 
x ~ ~. Physically, the velocity potential Re G(x;  ~ ,  f ,  e) exp (e -- i) t of  the flow created at 
point x (x,  y ,  z ~< 0) by an outflow of  strength Re exp (e -- i) t at point ~ (~, ~7, ~" ~< 0), stemming 
from a submerged source if ~" < 0 or a free-surface flux if ~" = 0, is identical to the potential 
Re G(~; x, f ,  e) exp (e - - i ) t  of  the flow created at point ~ by an outflow Re exp (e - - i ) t  at 

point x, stemming from a source if z < 0 or a free-surface flux if z = 0. It then follows that 
equations (4.3) and (4.4) are also satisfied by the function G(~; x, f ,  e). These equations are 
important for the formulation of  an integral equation for determining the velocity potential of  
flow about a body in regular waves, as is shown in [19] where a new integral equation indeed is 
obtained by using both equations (4.3) and (4.4). 

5. Single-integral representations 

It  is convenient to introduce the notation h --fp =-f(x'Z + y,2), /2,  v =fz' ,  and d -  (h 2 + 
'02) 1/2 =fr' ,  so that we have 

h =- f [ (x - -~)2  +(y_r/ )21, /2  = w 2 [ ( X _ X s ) :  + ( Y - - Y s )  21a/2[g, 

v - f ( z  + ~) - ~2  ( z  + z~) /g ,  

d - f [ ( x  - ~)2 + ( y  _ ~)~ + ( z  + ~')~l 1~ 

=- ¢o2[(X--Xs) z + ( Y - -  Ys) 2 + (Z + Zs)2]l/2/g, 
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where (X, Y, Z )  and (Xs,  Ys, Zs )  are the dimensional coordinates of the field point and of the 

singularity, respectively, in the Green function, and equation (2.5a) was used. It may thus be 
seen that d represents the adimensional distance, in terms of L = g/~o 2 as reference length, 
between the field point and the mirror image of the singularity with respect to the free-surface 
plane z = 0, while h is the horizontal distance (similarly adimensional) between these two 
points, and v is the negative of the vertical distance. 

We restrict our attention to the limiting case e = + 0 corresponding to purely oscillatory 
flow. By performing the change of variable k = f X  in the inner integral in expression (3.10b), 
we can express the Green function G(x; ~ , f )  = G(x ;~ , f ,  e = + 0) in the form 

4rrG(x; ~ , f ) [ f  = -- l[fr + g(h ,  v), (5.1) 

where the function g(h ,  v) is defined by the double integral 

1 2 . T r  * *  e(V-ihcosO) h 
g ( h , v )  = d 7r o dO dX h - - ( 1  + i 0 )  (5.1a) 

By performing the changes of  variables ct = f/a and/3 = fv in expression (3.10a), we may obtain 
the alternative double-integral representation 

1 2 f ? j ~  e v(Iz2+v2)ll2-ihl~ 
f o d v  v2)1/= . (5.1b) g ( h , v )  - d 7r (I a2 + -- (1  + iO) 

5.1 Haskind's in tegral represen tation 

We start by expressing the double integral (5.1a) in the form 

g(h ,  v) = -- l i d  -- (2170 ( lrI(O;h,  v) dO, 
o,O (s.2) 

where I(0; h, v) is the inner integral given by 

e(u-ih cos 0 ) h  ~= 
I (O,h ,  v) =1o dR. 

By considering the contours of integration in the complex plane X = 3,r + iXi shown in Figure 1 
- where the lower and upper contours are selected for 0 < 0 < 1r/2 and 7r/2 < 0 < rr, respect- 
ively - we can express the integral I in the forms 

f~ 
* e-(hcosO+iv)t 

I = dt  for 0 < 0 < 7r/2, 
t - - i  

f (  e(hc°sO+iu)t 
I = t + i dt  -t- 27tie ° - i h  c o s  0 for rr/2 < 0  < rr. 
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Figure 1. Contours of integration in the complex plane h =- h r + ih i. 

Use of the above expressions for I into equation (5.2) then readily yields 

I 2 f~r/2dpf~* e-(hc°sO+iu)t 2 f ~  f o  e(he°sO+iv)t 
g(h ,v)  = - - ~ - - - ~  Jo OJo t - - i  d t - - - -  7r 2 dO t + i 

4ie ° e - ih  e°s O do .  
~ITI2 

dt 

After performing the change of variable 0 = n - -  ~ in  the last two integrals, we may regroup the 
first two integrals and express the function g(h, v) in the form 

g(h, v) = W(h, v) + N(h ,  v), (5.3) 

where the functions W(h, v) and N(h,  v) are defined as 

e 7r/2 i "  ~ /2  

W ( h ' v ) = - - 4 i e ~  |jo eihC°'°dO' N ( h , v ) = - - l / d - - ( 2 / T r )  J ° J(O (5.4) 

with J (O ; h, v) given by 

f o  e-(he°sO+iv)t f o  e-(he°sO-iv)t 
J = dt + dt. (5.4a) 

t - - i  t + i  

The integral W(h, v) may be expressed in terms of 'standard functions', as may be seen for 
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instance from equations (9.1.18) and (12.1.7) in Abramowitz and Stegun [24, pp. 360 ,496] .  

Specifically, we have 

W(h, 7)) = 27r exp (v)[H0(h)  --iJo(h)], (5.5) 

where/ to  and Jo are the usual Struve and Bessel functions, respectively. 
By performing the changes of  variables r = (h cos 0 + iv) t and r = (h cos 0 -- iv) t in the 

first and second integrals, respectively, in expression (5.4a) for J,  we may obtain 

~(  e-rdr ! :  e-rdr 
J = + (5.6) 

r + v -- ih cos O - r + v + ih cos O 

By grouping these two integrals, we can obtain 

f (  e-r(r + v)dr 
J = 2 ( r + v )  2 + h  2 cos20" 

Use of  this expression for J in equation (5.4) then yields 

~'~ dO 
N(h,  v) - dl 4rr - dre-r(r + v) f: /2 (r + v) 2 + h 2 cos20 

where an interchange in the order of  integration with respect to r and 0 was performed. The inner 

integral (with respect to 0) can be evaluated (in the usual manner by transforming this integral 

into an integral around the unit circle Izl = 1 in the complex plane z = ei°). We may then 

obtain 

1 I : ° e - r sgn ( r+v )dr  l _ 2 e O f :  e - t sgntd t  
N(h ,v)  = - - ~ - - 2 .  [ ( r + v )  2 +h211/2 = -- (t 2 +h2)1/2, 

where the change of  variable t = r + v was performed. The last expression may readily be 

written in the following alternative forms: 

N(h,  v) -- fO 1 2eVf :e_ t ( t  2 +h2)_i/2dt+2eV e_t(t2 +hZ)_l/2dt ' 
d .v 

1 ~ 2eVf :  e_t(t2 + h2)_X/2dt. N(h,  v) = ----d-- 4evf~ e-t(t2 + h2 )-l/2dt + 

The first integrals in the above alternative expressions can be expressed in terms of  'standard 
functions' as may be seen for instance from equation (12.1.8) [24, p. 496] .  We may then 
obtain 
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f--O N ( h ,  v) =- - -d l  + lreV [Yo(h) - -Ho(h) ]  + 2 . o et+V(t2 + h2)- l /2dt '  (5.7a) 

1 f-u N ( h ,  v) = ---d + 21reV [Y°(h) - - / lo (h ) ]  + 2 - .  et+V(t 2 + h~)-l/2dt, (5.7b) 

where Yo and / to  are the usual Bessel and Struve functions, respectively, as they are defined in 

[24] for instance. 

By using the above alternative expressions for N ( h ,  v) and expression (5.5) for W(h, v) in 

equation (5.3), we may finally obtain 

fO ° 1 + 2 et+O(t 2 + h2)-l /2dt ,  (5.8a) g(h,  v) = 7re ° [Yo(h) + Ho(h)  -- 2/Jo(h)] -- 

j'-° 
g(h,  v) = 21re ° [Yo(h) -- Uo(h)] -- 1 + 2 + (5.8b) 

Expression (5.8b) is identical to the expression obtained by Haskind [7] and given in Wehausen 

and Laitone [12, p.477] equation (13.17'). The modified Haskind expression (5.8a) was used 

by Kim [14] and Yeung [15],  and was also recently rederived by Hearn [16].  For purposes of  

numerical evaluation, a convenient alternative form of the integral in expression (5.8a) is 

obtained by performing the change of  variable r = -- (t + v)/d. This yields 

g ( h , v )  = 7reV[yo(h)+ Ho(h ) - -2 i Jo (h ) ]  - -~ -+  2 e-Ctr(1--2a'c +'c2)-l/2dr, 

(5.8c) 

where we have c~ - -- v/d by definition and 0 ~< a < 1. This modified Haskind integral represen- 
tation is very well suited for evaluating the Green function for small values of a. Indeed, for 
v = 0, the integral in formula (5.8c) vanishes, and we have the particularly simple expression 

g(h,  v = 0) = lr [Yo(h) + H o ( h )  -- 2/Jo(h)] -- 1/h. (5.9) 

However, Haskind's integral representation is clearly not well suited for evaluating the Green 
function for values of  a close to 1. As a matter of  fact, expressions (5.8) are not defined for 

ct = 1, i.e. for h = 0 and v < 0, so that these expressions can only be used for v ~< 0 and h > 0. 
A complementary single-integral representation that is well suited for evaluating the Green 

function for v ~< 0 and small values o f h  ~> 0 will now be derived. 

5. 2 The near-field integral representation 

By performing the changes of  variables t = 7 + v -- ih cos 0 and t = ~ + v + ih cos 0 in the first 
and second integrals, respectively, in equation (5.6) we may obtain 

J = exp (v -- ih cos O)Ea (v -- ih cos 0) + exp (v + ih cos O)E1 (v + ih cos 0), 
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where E1 is the usual exponential integral defined here as in equation (5.1.1) [24, p.228]. By 
using the symmetry relation E l ( Z )  = E l ( Z ) ,  we may then obtain J = 2 Re exp (v + ih cos 0) 

Ex (v + ih cos 0). Use of this expression for J in equation (5.4) finally yields 

N ( h ,  v) = -- l id  -- (4/7r) f~/2 Re eZE,  (Z)dO,  
dO 

(5.10) 

where Z is the complex function defined as Z = v + ih cos 0. 
By using formulas (5.5) and (5.10) in formula (5.3), we then have 

g(h ,  v) = 27re ° [H0(h) - - iJo(h)]  . . . .  
77r/2 

1 4 J0 R e e L E l ( Z ) d O ;  Z - v + i h c o s O .  
d zr 

(5.11) 

For the sake of easy reference (and for reasons which will become clear further on), the 
expression for the Green function defined by formulas (5.1) and (5.11) is referred to as the 
'near-field integral representation' of the Green function. This expression has also been 

obtained, independently and in a different manner, by Guevel and Daubisse [17] and Martin 
[18]. The near-field integral representation (5.11) takes a particularly simple form for h = 0, 
namely 

g(h = 0, v) = l / v - -  2 exp (v)[Re E l ( v  + i,O) + in]. (5.12) 

The main interest of the integral representation (5.11), by comparison with the alternative 
integral representation (5.8c), resides in that this expression can be used to obtain an ascending 
series useful in the neighborhood of the origin h = 0 = v, i.e. for small values of h and -- v. This 
ascending series will be given in Section 7. 

5.3 The far-field integral representation 

We now start from the double-integral representation (5.1b), which we write in the form 

g(h,  v) = 1/d -- (2/7r) : :  I(v; h, v) dr, (5.13) 

where I(v; h, 7)) is the inner integral defined as 

+I)2) 1/2 eV(i a2 -ihl~ 
I(v; h, V) 

J-~ (U 2 + v2) v2 - - (1  + i0) du. 

By multiplying the numerator and denominator of the integrand of the inner integral I by the 
expression (/l 2 + v2) x/2 + (1 + i0) and by rearranging the denominator, we may express this 
integral in the form 
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- i  ( v 2 -  I ) 1 / 2  ) /  

. ! v > l )  
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Figure 2. Contour of integration in the complex plane ~ =- t~r + i~i. 

e °("~+"2) . . . .  ihu[(Ia2 +V2) 1/2 + ( 1  +i ,0)]  d/a. 
I = f ? ,  [ # - - ~ - ~ - - ~ [ / a _ ( l _ v  2 +i,0),/2 ] 

The poles _+ (1 - - v  2 + iO) I/2 of  the integrand of  the above integral are given by -+ [(1 -- 
v ~)1/2 + i,0] if 0 < v < 1 and + [ 0 + i (u  2 - -  1) 1/2] if 1 < v < oo. By considering the contour of  

integration in the complex plane / ~ -  #r + ilai shown in Figure 2, and noting that we have 
(/~2 + v2)a/2 = ~ i(g~ -- v z)1/2 for/a = + 0 + i~i on the two sides of  the cut defined by/lr  = 0 

and -- oo < /a  i < -- v, we can express the integral I in the form 

f - v  ehgi+ iv(la2i -P: ) ~ /2 ehlai-iv(l~} -v2 ) 2/2 

I = -= i(/a] -- v2) 1/2 ~-"i idlai + f - ;  - - i ( Ia]  - -  v2) 1/z - 1 idlli - -  27rLR. (5.14) 

In this expression R is the residue at the pole -- (1 --/3 2)1/2 if 0 < u < 1, or at - - i (v  2 -- 1)I/2 if 

1 < v < oo, so that we have 

- - exp  [ v +  ih(1  - - v 2 ) 1 / 2 ] / ( 1  - -v2)  1/2 if 0 < v <  1 
R (v; h, v) = 

i exp  [ v - - h ( p  2 --  1 ) l / 2 ] / (p  2 - -  1) 1/2 if 1 < v < , ~  
(5.15) 

as may easily be found. By performing the changes of  variables t = (/a~ - -v2)  1/2 and t = -  

(/a] _ v2)1/2 in the first and second integrals, respectively, in expression (5.14), we can finally 

obtain 
d_h(t2 + v 2)1/2 + ivt 

l ( v ;  h ,  v)  -= j_~  ( t  + i ) ( t  2 + v2) 1/2 t d t  - -  27r iR (v ;h ,  v) ,  (5.16) 

where R is given by equations (5.15). 
By using equations (5.16) and (5.15) in formula (5.13), we may then express the function 

g ( h ,  v) in the form 

g ( h , v )  = W ' ( h , v ) +  N ' ( h , v ) ,  (5.17) 
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where the functions W' and N '  are given by 

W'(h, v) = 

N ' ( h ,  v) - 

1 - e -h(v2 eih(l v2) 1:2 _1) 1/2 

--4ieV~£ (-{Zu2)1/2 du - -4e  v f ~  ( u 2  1)1/2 du, 

f :  f : -  pe-h('2+vb"2+ivU 1 2 dv dp v2)l/z. 
d rr (p + i)(p 2 + 

(5.17a) 

(5.17b) 

The two integrals in equation (5.17a) can be expressed in terms of usual Bessel functions, as 
may be seen by performing the changes of  variables u = sin 0 and v = (1 + t2) 1/2 in the first 

and second integrals, respectively, and by using equation (9.1.18) [24, p.360] and equations 
(12.1.7) and (12.1.8) [24, p.496].  Specifically, we may obtain 

W'(h, v) = 2rre v [Yo(h) - - i Jo  (h)] =- -- 2nieVH(ol)(h). (5.18) 

By performing the changes of  variables p = X cos 0 and v = ~ sin 0 in the double integral 
(5.17b), we may express the function N ' ( h ,  v) in the form 

N'(h ,v)  = 1/d--(2/~) J(O;h,v)dO, (5.19) 

where the inner integral J is given by 

f ~  e-(h -iv cos._...~0)h 
J(O;h,v) = o ~ i s e e 0  hd~ 

This integral may be expressed as 

j _ 
h -- iv cos 0 

. ~ e-(h -iv c o s  O)h 
i s e C 0 j o  ~ T s ~ c O  dX. 

By performing the change of  variable r = ~ + i sec O, we may then obtain 

isecO f :  J - Z i sec OeZ i ec0 e-(h-iv cos 0)7- d___rT ' 

where Z is the complex function defined as Z = v + ih sec 0. The change of  variable t = (h -- 
iv cos 0)z  then yields 

( 1  f ; e  - t  ) J = i s e c 0  --e z -[-dt  = i secO[1 /Z- -eZEl (Z)] .  

Substitution of this expression for the inner integral J into formula (5.19) then gives 
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7r/2 

N ' ( h ,  v) = -- l / d - -  (4/7r) fo Im eZE1 (Z)  sec OdO, (5.20) 

as may be found after some transformations. 
By substituting expressions (5.18) and (5.20) for W' and N' ,  respectively, into formula 

(5.17), we can finally obtain 

1 4 ,.~/2 
g ( h , v )  = 2neO[Yo(h) - - i Jo(h)]  ----d---~ Jo I m e Z E ~ ( Z ) s e c O d O ;  Z = v +  ih sec0. 

(5.21) 

This expression is obviously not defined for h = 0, and is best suited for evaluating the function 
g(h,  v) for large values of h. The expression for the Green function defined by formulas (5.1) 
and (5.21) will thus be referred to as the 'far-field integral representation'. To the author's 
knowledge, this integral representation does not seem to have been given previously. There is a 
striking similarity in form between the far-field representation (5.21) and the near-field repre- 
sentation (5.11). These two integral representations indeed are complementary. In particular, 
the near-field representation (5.11) readily provides an asymptotic expansion valid for large 
values of d and small or moderate values of  h/d, that is in a sector neighboring the vertical axis 
h = 0; while an asymptotic expansion valid for large values o l d  and small or moderate values of 
- - r id ,  that is in a sector neighboring the horizontal axis v = 0, can readily be obtained from 
the far-field representation (5.21). These complementary asymptotic expansions are given in 
the following section. Comparison of expressions (5.8b) and (5.21) show that these expressions 
are equivalent, and that in fact we must have 

f'e T( v )-1,2 
- f I m e ° + i h s e e ° E l ( v + i h s e c O )  secOdO =- l + 2 - - r + r  2 dT, 
7i" v 0  JO d 

as may be obtained by performing the change of variable r = -- (t + v)/d in the integral in the 
Haskind expression (5.8b) 

6. Asymptotic expansions 

Let us first consider the far-field integral representation defined by expression (5.21), or by the 
equivalent equations (5.17), (5.18), and (5.20). We define the integral 11 (h, v) as 

f 
~/2 

I i ( h , v )  = Im(--2/rr)  (1/Z)  secOdO; Z = v + i h s e c O .  (6.1) 
JO 

We have 

I~ (h , v )  = 1/d, (6.1a) 
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as may easily be verified, and indeed was already used in the derivation of expression (5.20). By 
using equations (6.1 and 6. la) in equation (5.20), we may express the function N ' ( h ,  v) in the 

form 

f n/~Im [ e Z E l ( Z ) - l / Z ]  secOdO; Z - v + i h  sec0. (6.2) N ' ( h ,  v) = l / d - -  (4170 Jo 

By using the well-known asymptotic expansion 

e x p ( Z ) E ~ ( Z ) - - I / Z  ~ ~ (--1)"n!/Z n÷x as IZ[~oo, with [ArgZl<n ,  (6.3) 
n ~ l  

in expression (6.2), we may obtain the asymptotic expansion 

N'(h, v) ~ 1/d + 2 ~ (-- 1)"n !I.÷ 1 (h, v) as d ~ 0% with h > O, (6.4) 
n > ~ l  

where In+ 1 (h, v) is the integral defined by 

l . n /2  

In+l(h,v ) = Im(--2/Tr) J0 (l/Zn+l)secOdO; Z = v + i h  sec 0. 

It may be seen that we have the relation 

l n . l ( h , v  ) = (-- 1/n)bI,,(h,v)/av, 

from which we may obtain 

(-- 1)nn!In+l (h , v )  = a"S, (h ,  v)/aV" = an ( l i d ) l ay  n, (n >1 1), 

where equation (6.1a) was used. The asymptotic expansion (6.4) then becomes 

(6.5) 

(6.5a) 

N ' ( h , v ) ~  l i d ÷  2 ~ On( l /d) /bv  n as d~o% with h > 0 .  (6.6) 
n ~ l  

It may be verified that we have 

n(1/d) /av  n = pn(a)/dn÷a,  (6.7) 

where a - - - v /d ,  and P, (a )  is a polynomial of degree n in a. 
By using equation (5.18) and equations (6.6) and (6.7) in equation (5.17), we may finally 

obtain 
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g(h, v) ~ 21re v [Y0(h) -- iJo(h)] + lid + 2 ~. P,(a)/d n÷l as d~oo,  (6.8) 
n ~ l  

with 0 <~ a - -- v[d < 1. The first few polynomials Pn (a) may be shown to be 

PI = a, P2 = - - (1--3a2) ,  

P3 = - -32a(1- - ]a2) ,  P4 = 32(1 - l O a 2  +~3a4), (6.8a) 

Ps = 33"52a(1- -~a2  + ~ a * ) ,  P6  = --32"52(1 -21a2  + 63a4 - - S ' ~ ' l a 6 )  • 

We now consider the near-field integral representation defined by expression (5.11), or by the 
equivalent formulas (5.3), (5.5), and (5.10). We define the integral 

rr/2 

I i (h ,v )  = Re(--2/Tr) f (1/Z)dO; Z =- v+ihcosO.  (6.9) 
.0 

We have 

I i (h ,v )  = 1/d, (6.9a) 

as may be verified. By using equations (6.9) and (6.9a) in equation (5.10), we may express the 
function N(h, v) in the form 

N(h,  v) l i d  - -  (4/*r) [ ,~,2 = Re [ e Z E l ( Z ) - l / Z ] d O ;  Z - v+ihcosO.  (6.10) 
aO 

By using the asymptotic expansion (6.3) in expression (6.10), we may obtain the asymptotic 
expansion 

N ( h , v ) ~ l / d + 2  (-1)"n!In+l  (h, v) as d ~  oo, with v<O,  (6.11) 
n ~ l  

where In.  1 (h, v) is the integral 

= Re(--2/n) fo/2(1/Z"+l)dO; Z =-- v+ihcosO.  ln+l(h ,v )  

Equations (6.5) and (6.5a) may readily be verified to hold, so that the asymptotic expansion 
(6.11) becomes 

N ( h , v ) ~ l / d + 2  ~ O'*(1/d)/~v" as d~oo,  with v<O. (6.12) 
n ~ l  
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The functions N' (h ,  v) and N ( h ,  v) defmed by equations (6.2) and (6.10) thus happen to have 
the same asymptotic expansion as d ~ ~, although these expansions are not valid in the same 
regions of the (h, v) plane. Specifically, the asymptotic expansions (6.6) and (6.12) are not 
valid in the neighborhoods of the vertical axis h = 0 and of the horizontal axis v = 0, respect- 
ively. It may be convenient to express the polynomials P, (a)  in equation (6.7) as functions of 
/3 = hid [so that we have a = (1 --132 )1/2]. The polynomials P,  (a) can then be expressed in the 
form 

Pn (CO = n ! Qn q3), (6.13) 

where the functions Qn(/3) verify Q , ( 0 ) =  1, since we have P , ( 1 ) =  n! as may be verified from 
equation (6.8a). 

By using equation (5.5) and equations (6.12), (6.7), and (6.13) in equation (5.3), we may 
finally obtain 

g ( h , v ) ~ 2 7 r e ° [ H o ( h ) - - i J o ( h ) ]  + l / d + 2  Z n!Qn([3)/d"+' as d ~°° ,  (6.14) 
n~>l 

with 0 ~</3 = hid < 1. The first few functions Qn q3) are given by 

Q1 = ( 1 - / 3 2 )  1/2 , Q2 = 1 - ~ / 3 2 ,  

Q3 = (1 - - /32)a /2(1  _ ~ / 3 2 ) ,  Q4 = 1 - 5 / 3 2  + ~ / 3 4 ,  

Qs = ( I - - / 3 2 ) 1 / 2 ( 1 - - 7 / 3 2  +f~sf l4) ,  Q6 = 1 - 22~/32 + L~/34 _ 12~6fl6. 

(6.14a) 

The difference, 6g(h,  v) say, between the values of the function g(h,  v) given by the asymptotic 
expansions (6.8) and (6.14) is given by 

f ig(h ,v)  = 2neV[yo (h ) - -Ho(h ) ]  - 27re-(1-#~)"~d[Yo(f ld)- -goq3d)] .  (6.15) 

The function fig(h, v) thus is exponentially small as d --> ~, provided we have 0 < 13 < 1. It may 
then be seen that the 'transition discontinuity' fig(d,/3 =/30 due to the use of the asymptotic 
expansions (6.14) and (6.8) for 0 ~</3 </3 t and/3t <13 ~< 1, respectively, is exponentially small, 
and thus is negligible - in an asymptotic sense - in comparison with the algebraic terms I /d"  
in the asymptotic expansions. An optimum transition between the asymptotic expansions (6.8) 
and (6.14) may be determined from the obvious requirement that the transition discontinuity 
fig(d,/3t) is a minimum. This optimum transition then is given by the solution of the equation 
a[fig(d, /3)]/a/3 = 0. By differentiating equation (6.15), we may then obtain the following 
equation for the 'transition curve' vt (h) 

-- v t = h [Ho(h) -- Yo(h)] / [/11 (h) -- YI (h) -- 2/1r], (6.16) 

where equations (9.1.28) and (12.1.11) [24, pp. 361,496] were used. In particular, equation 
(6.16) gives 
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--vt ~ h 2 ( 1  + 2/h 2 -- 30/h 4 + . . . )  as h ~oo,  (6.16a) 

as may be obtained by  using equations (12.1.30) and (12.1.31) [24, p . 4 9 7 ] .  By substituting 

expression (6.16a) into equation (6.15) we may then obtain the following expression for the 

transition discontinuity 6 g t ( h ) ~ - - 4 e x p ( - - h 2 ) / h  as h-+  ,,o. The discontinuity may be 

regarded as negligible in practice if  it is sufficiently small in comparison with the main algebraic 

term, i.e. 1/d, in the asymptotic  expansions (6.8) and (6.14). We thus require that 4 d  exp 

(--h 2)/h be smaller than the desired relative accuracy, e say, which might be taken as e = 0.01 

for practical applications. This then yields 4(1 + h 2 )  1/2 exp ( - - h  2) < 0.01 [since we have 
d = (h :  + v 2)x/2 ~ h (1 + h 2)1/2 as h -+ oo on the transition curve --  v ~ h 2 ] ,  from which we 

may obtain h > 2.6 and d > 7.2. 

For  sufficiently large values of  d (say for d greater than about 7 according to the foregoing 

analysis), the function g(h, v) can then be evaluated by means of  the asymptotic expression 

g(h, v) ~ W(h, v) + N(h,  v) as d--+ oo. (6.17) 

The function W(h, v) in expression (6.17) is given by 

2n exp (v) [Yo (h) - -  iJo (h)] v t (h) <~ v <~ 0 
W(h, v) = for , (6.17a) 

27r exp (v) [/to (h)  - -  iJo(h)] - -  o o  < v < vt(h ) 

where the transition curve vt(h) is defined by equation (6.16). The function N(h, v) in ex- 

pression (6.17) can be evaluated by means of  either one of  the equivalent asymptotic  expansions 

N ( h , v ) ~ l / d + 2  ~ P.(a)/d n*l =- l / d + 2  ~ n!Qn(/3)/d "*1 as d '+°°,  

n ~ x n ~ i (6.17b) 

where a = -- v/d and/3 = h/d, and the functions Pn (a) and Qn(/3) are given by equations (6.8a) 

and (6.14a). 

The error associated with the use of  the asymptotic  expansion (6.17b) is of  the order of  the 

term following the last term in the truncated series (i.e. the first discarded term in the series), as 

is well known. The requirement that the function N(h,  v) be evaluated with a relative accuracy 

e (say with e = 0.01 in practice) may then be approximately expressed by the condit ion 

2lP,(a)[/d" < e, which yields d > [2lP,(a)l/e] 1/,. The function d,(a; e) = [2lP,(a)l/e] 1/, 
may be evaluated, notably in the particular cases a = 0 and a = 1. In the particular case a = 1 

(13 = 0), that is along the vertical axis h = 0, we have P , ( 1 )  = n!,  so that we may obtain d,(a = 
1, e)= (2n!/e) TM. For e = 0.01, we may then obtain dl  = 200, d2 = 20, d 3 = 10.63, d4 = 

8.32, ds = 7.52, d 6 = 7.24, d 7 = 7.21, d8 = 7.30 . . . . .  In the particular case a = 0(/3 = 1), 
that is along the horizontal  axis v =  0, we have P 2 , - l ( O )  = 0 and I f2 , (0) l  = 12.32.52. • • 

(2n --  1) 2 , as may be seen from equations (6.8a). We may then obtain d2n (a = 0, e) = [2.12 . 

32.52. . .  (2n --  1)2/e] 1/2n. For e = 0.01, this yields d2 = 14.14, d4 = 6.51, d 6 = 5.96, ds = 
6.21 . . . .  The above results suggest that if a relative accuracy e = 0.01 is desired (as ought to 
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be sufficient for most practical applications), it may not be advantageous to use more than the 

first five terms, i.e. 1 ~<n ~<4, in the asymptotic expansion (6.17b); furthermore, it appears 
that this 5-term asymptotic expansion could be used for d greater than about 8 i f a  = 1 (h = 0) 
and for d greater than about 6.5 if a = 0(v = 0). These values of  d fortunately happen to be 

about the same as the value d -- 7.2 found previously from the requirement that the transition 
discontinuity in the value of  the function W(h, v) be negligible. On the basis of  the foregoing 

analysis, it may thus be recommended that the 5-term asymptotic expansion (6.17b) be used in 
a region which may approximately (and tentatively) be defined by the equation h2/45 + v2/ 
65/> 1; a more precise numerical determination of  the domain of  practical usefulness of  the 

asymptotic expansion (6.17b) is, of  course, possible. 

7. Ascending series 

In this section, an ascending series for the function g(h, v) is obtained from the near-field 

representation given by formula (5.11), or by the equivalent equations (5.3), (5 .5)and (5.10). 
Let the integrand exp (Z)E1 (Z)  in equation (5.10) be expressed in the form 

eZE1 (Z)  = -- eZ(ln Z + 3') + e z [El (Z)  + In Z + 3']- (7.1) 

Furthermore, let the complex function Z - v + ih cos 0 in the term in Z be written in the form 

) - - -  cos 0 (7.2) 
2 d - - v  ' 

for reasons that will become clear further on. Also, let the parameter o be defined as 

o - h / ( d -  v). (7.3) 

It may be verified that we have 0 ~< o ~< 1, and 2v/(d -- v) = 0 2 -- 1, so that equation (7.2) 
becomes 

d - - v  
Z - (o z - l + i 2 o c o s O ) .  

2 

Use of  this expression for Z in equation (7.1) then yields 

eZEl (Z )  =--ev+ihcosO[ln d - v  ] + 7 +  i l r + l n ( 1 - - u  2 - i 2 u c o s O )  

+ e z [El (Z)  + In Z + 3']. 
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By using this expression for the integrand exp ( Z ) E I ( Z )  in equation (5.10), we may express 
the function N(h, v) in the form 

N(h,v) = ~ + 2 e  ~ l n d - - v +  _ _ 2 7 Jo (h) nHo (h) + I 2J, (7.4) 

where equations (9.1.18) and (12.1.7) [24, pp. 360,496] were used, and I and J are the integrals 
defined as 

= (2/70 Re ()07r/2 e ih cos 0 In [1 -- O 2 -- i2o COS 0] dO, (7.5) I 

J = (2/7r) f~/2 ReeZ[Ex(Z)+lnZ+7]dO;  Z - v+ihcosO. (7.6) 
d o  

Substitution of expressions (5.5) and (7.4) for the functions W and N in equation (5.3) finally 
yields the expression 

g(h,v) = - - 1 / d + 2 e  ° / n  +7--irr Jo (h )+I  --2J. (7.7) 

The ascending series for the above-defined integrals I and J are given below. The integral J is 
considered first. 
We have 

eZ[Ea(Z)+lnZ+7]  =[ rn=o  ~ Zrn/m!] [h~=l(--1)k+lZk/k'k!] ' 

as readily follows from the ascending series of the functions exp (Z) and E1 (Z). The above 
product of series may be expressed in the form 

n~l[k~=l(--1)k+l n! ] Z  n n 1 I Z  n 
-- ~ (~--~)!kil~! =~, (~ ]~ . ' '  

where equation (0.155, 4) [25, p.4] was used. The well-known binomial expansion formula 
yields 

Z n =-- (v + ih cos O) n = ikhkvn-k COSk0. 
k=ok~ / 

We may then obtain 

ReZ n = n! ~ (--1)kh2kVn-2k cos2kO/(2k)!(n--2k)!, 
k = 0  
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where n' is defined as n' = n/2 i f n  is even or as n'  = (n -- 1)/2 i fn  is odd. We thus have 

R e e  z[El(Z)+lnZ+7] = ( ] £ ~ 1 ( - -1 )k  ( 2 k l ' ( n - - 2 k ) !  c°s2kO " 
n : l  m : l  m k=o 

Substitution of  this series for the integrand in the integral (7.6) and term by term integration 

finally yields 

J = v+ n/n! + ( _ 1 )  ~ 1 . 3 . 5 . . . ( 2 k - -  1) h2t~v n-2~ 
n = 2 \ r n = l  / \  k = l  2 . 4 . 6 . . . ( 2 k )  (2k ) ! (n - -2k ) ! ;  

n' = [ n/2 
(7.8) 

t (n -- 1)/2 

We now consider the integral I .  By replacing the function exp (ih cos 0) in equation (7.5) by 

the ascending series ~ i"h" cos"O/n!, we may obtain 
n = O  

h2n h2n+l ] 
I = £ (-- 1) n ReI2n ImI2n+l  , (7.9) 

n=o [ ( -~n)  .T (2n + 1)! 

where I ,  is the integral defined by 

rr /2 

In = (2/7r) fo In [1 - - o  2 --i2o cosO] cosnOdO. 

It may be verified that we have 

- t 
R e I 2 ,  = I~,  and ImI2n+l  = --z12,+1, 

where I' ,  is the integral given by 

In = (1/2tO -rr In [1 - - a  2 - - i 2 a  cosO] cosnOdO. 

(7.10) 

Use of equations (7.10) in equation (7.9) then yields 

I = I~ + ( - -1 )  n 12 n - i  
=1 

h2n-1 ] 
( 2 n -  1)! I~n-1 (7.11) 

The integral I "  can be. expressed as a contour integral around the unit circle Izl  = 1 in the 
complex plane z = exp (iO). We thus have 
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i2"I" s = 1 In - - i a  + ( z - - i o )  + - -  
27r Izl=l Z Z 

By using the binomial theorem, and after some transformations, we may obtain 

(z 1 )  ~n ~ 1 ( 2 ; ) ( z  1 ) (2n) l ,  1 + = 2n-2k-I + + 
g k=O z2"n-'-2k+l \ n / z 

1 [ 1"~ 2"-1 ~ l ( 2 n k l ) ( z 2 , , _ 2 h _ 2  + z 2 1 2 k ) "  

Use of equations (7.13a,b) in equation (7.12) then yields 

[2n~ , ~1[2nl + 
i22nI;n = i~n )I~ + k=o ~ k ] (I2n-2k-2 q- I2n-2k+l), 

1 + 
i2~"-1I;.-~ = F~ ( I 2 , , - ~ - 2 +  I~.-~k) 

k=O k 

where 1+~ and I~ are the integrals defined by 

l*m . . . .  27rl ~lzl xln[ ia z z+i)(z--ie)lzmdz, m)O, 

i s  Ira = ~ zl= In  ----z + (z--io) -~--~, m~>2. 

(7.12) 

(7.13a) 

(7.13b) 

(7.14a) 

(7.14b) 

(7.15a) 

(7.15b) 

It may be verified that we have 

1~ = O. (7.16) 

Furthermore, we have 

I~ = I,~_ 2 , (7.17) 

as may easily be verified by performing the change of variable z = 1/~ in the integral (7.15b). 
Use of equations (7.16) and (7.17) in equations (7.14a,b) then yields 

i22n-lI;n = I~+~_:h (7.18a) 
k=o\k / -1, 
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n-l  ( 2 n - - l ]  + 
i22n-2I'2n-1 = 4--oZ \ k ]I2n-2k-2.  (7.18b) 

We have 0 <~ o <~ 1, so that the function In [--ia(z + i/a)] z 'n is holomorphic in the region 
Izl ~< 1, and the integral (7.15a) becomes 

/+m = 1 f ln(~_~_)z.dz = 1 f ln(1--ia~')d~" 2"-'~ Izl--' ~ I~'1 = ' ~m-'g~' 
(7.19) 

where the change of variable ~" = 1/z was performed. We can then obtain 

I~  = iraom+l/(m + 1). (7.20) 

Use of expression (7.20) for the integral Ir~ in equations (7.18a,b) then gives 

n - 1  

(-- 1)nI~n/(2n)! = (--2/2 TM) 

k---O 
(-- 1)ko2'~-2~/(2n - - 2 k ) k ! ( 2 n  - - k ) ! ,  (7.21a) 

i(-- n , / ( 2n - -  1)! = 1) I2n-1 

n-1  
(-- 2/22"-a) ~ (-- 1)ko 2"-1-2k/(2n -- 1 -- 2k )k ! (2n  -- 1 -- k)!. (7.21b) 

k=O 

By substituting expression (7.16) and (7.2 l a,b) for the integrals I~, I~ n and I~,_ t in equation 
(7.11), we may finally obtain 

I=  --2 t {  ~' (--1)k an-z~( h i  n h f./2-1 
' "' t ( n -  1)/2 

(7.22) 

Equations (7.22), (7.8), and (7.7) - where the classical ascending series for the Bessel and 
Struve functions Jo (h) and Ho (h), namely 

[h~ \ " 
Jo(h) = n--0 ~ (--1)"1--4--) /(n')2'  (7.23a) 

71~o(h) = ~ (--1)nh2n+a/12.32 . 5 2 . . . ( 2 n + 1 )  2 , (7.23b) 
ri=O 
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may evidently be used - provide an ascending series useful for evaluating the function g(h, v) 
for small and moderate values ofd.  

8. One-dimensional Taylor-series expansions 

The near-field representation (5.11) may be used to obtain a Taylor-series expansion of the 
function g(h, v) in the neighborhood of the vertical axis h = 0. Let I(h, v) be the function 
defined as 

r ~r/ 2 

I(h,v) = Re(4/lr) Jo eZE~(Z)dO; Z =- v+ihcosO. (8.1) 

By expanding the function l(h, v) in a Taylor series about the axis h = 0, we may obtain 

I(h, v) = ~ a n [3nI(h, v)/bhn]h=o/n!. (8.2) 
n=O 

Differentiation of both sides of equation (8.1) yields 

'2  

3nI(h, v)/ah n = Re (4/r0 [d"eZE~(Z)/dZ"l i" cos"OdO. (8.3) 

From the definition of the exponential integral function E1 (Z), given for instance by equation 
(5.1.1) [24, p. 228], one may show that 

dnezEa(Z)/dZ n = eZEl(Z) + ~ (k- -  1)!/(--Z) k for n t> 1. (8.4) 
k--1 

By using equation (8.4) in equation (8.3), we may obtain 

a2ni] 1 . 3 . 5 . . . ( 2 n _  1) [e 2n ( k - - l ) ! ]  
~-ZS-ffn = 2 ( - - I )  n VReEl(v+i'O) + ~ (_v)k Oh [h=o 2 . 4 . 6 . . ( 2 n )  for n f > l ,  

• k = t ( 8 . 5 a )  

while for n = 0 we have 

I(h = O,v) = 2e ° ReEl(v+bO). (8.5b) 

We have Re iE1 (v + b0) = -- Im E1 (v + i,0) = 7r, as may be found from the ascending series for 
the exponential integral given, for instance, by equation (5.1.11) [24, p.229]. It may then be 
seen that we have 
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~//ahlh=0 = 4e °, (8.5c) 

and 

azn+ 11 [ 2.4.6... (2n) 
Oh2n+---'-ql ih=o = 4(-- 1) n 3 . 5 . 7 . . . ( 2 n  + 1) e ° for n~> 1. (8.5d) 

Use of equations (8.5a,b,c,d) in the series (8.2) then yields 

' ,=1 2 . 4 . 6 . . . ( 2 n )  (2n)-----.w +2J(h,v) 

+4eV[h+ t (_1) n 2 . 4 . 6 . . . ( 2 n )  h 2n+1 ] 
,=1 3 . 5 . 7 . . . ( 2 n +  1)(2n + 1) - - - - v .  ' (8.6) 

where the function J(h, v) is defined by the series 

[2. (k_~l)! ]  1 . 3 . 5 . . . ( 2 n - -  1) h 2" 
J(h,v) =n=,t (--1)[k~__, (__v)k] 2 . 4 . 6 . . . ( 2 n )  (2n)". (8.6a) 

The two series between brackets in equation (8.6) are the ascending series for the functions 
Jo(h) and (lr/2)Ho(h), respectively, as may readily be verified from equations (7.23a, b), so 
that equation (8.6) becomes 

I(h, v) = 2e v [Re E1 (v + i.O)Jo(h) + lr/lo(h)] + 2J(h, v). (8.7) 

The series (8.6a) for the function J(h, v) may be expressed in the form 

J(h,v) = ~ (--1)n[2~ 1 (2-n-~l-m)'] 1.3.5.. .(2n--1)h TM 

n=l -=0 (--v) 2"-m j 2 . 4 . 6 . . . ( 2 n )  (2n)!" (8.7a) 

By substituting expression (8.7) for the integral (8.1) into formula (5.11), we may finally 
express the function g(h, v) in the form 

g(h, v) = -- l i d -  2Jo(h) exp (v)[Re E1 (v + i,0) + irr] - -2J (h ,  v). (8.8) 

The series (8.7a) for the function J(h, v) can be written in the form 

J(h,v) = t ( - - 1 ) n l ' 3 " 5 " ' ' ( 2 n - - 1 )  [ h ~2, 
n=, 2n ~.4.6;~.-~)  I----v)Pn(v)' (8.8a) 
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where Pn(v) is the polynomial of  degree 2n -- 1 given by 

2n-1 
P,(v) = 1+ ~ ( - - v ) m / ( 2 n - - 1 ) ( 2 n - - 2 ) ( 2 n - - 3 ) . . . ( 2 n - - m ) .  (8.8b) 

m=l 

We have J(h = 0, v ) =  0 and Jo(h = 0 ) =  1, so that expression (8.8) becomes identical to 
expression (5.12) in the limit h = 0. 

A complementary Taylor series of the function g(h, v) in the neighborhood of the horizontal 
axis v = 0 can be obtained from the Haskind integral representation (5.8a). Let I(h, v) be the 
function defined as 

I(h, v) = foVet+V(t 2 + h2) - 1/2dt. (8.9) 

Expansion of this function in a Taylor series about the axis v = 0 yields 

I(h, v) = t vn [3n1( h, v)/avnlv=o/n!, (8.10) 
rl=l 

where the fact that l (h,  v = 0) = 0 was used. It can be verified that we have 

a2n+li[ = n 12.32.52.. . (2k-- 1) 2 32n+2I] 
Ov2"-'-----;ilo o ~ ( - 1 )k+ a  h 2a+1 - 3v2n+2 1 for n~>O. 

k=o o=o (8.11) 

Use of equation (8.11) in equation (8.10) yields the series 

( )[ V 2rt*l V ~ ( - -  1)k*l  ~./]lk+'] ' 
I (h ,v)  = = ( 2 n + l ) !  1 + 2 n + 2  k-o 

which may be written in the equivalent form 

(--V) 2n+l 

I (h ,v)  = n=ot ( 2 n + l ) !  
12.32.52...  (2n-- 1 --2m) 2] 

~ ~ ~ ~-/---T~ ] 

(8.12) 

By using equation (8.9) in equation (5.8), we may then express the function g(h, v) in the form 

g(h, v) = -- 1/d + 7r exp (v)[Yo(h) + Ho(h) -- 2iJo(h)] + 2I(h, v). (8.13) 

The series (8.12) for the function I(h, v) may be written as 
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- - v  2 ) , , - "  ( - -a)n  2 . 4 . 6 . . . ( 2 n )  2 - ~ + 2 )  I ( h , v )  = 1 +  +-~-x ~-h-  I 1 +  Po(h),  
(8.13a) 

where Pn(h) is the polynomial o f  degree 2n given by 

Pn(h)  = 1+ ~ ( - - 1 ) m h 2 m / ( 2 n - - 1 ) 2 ( 2 n - - 3 ) 2 ( 2 n - - 5 ) 2 . . . ( 2 n +  1 - - 2 m )  2. 

m=~ (8.13b) 

In the limit v = 0, we have I = 0, and expression (8.13) becomes identical to expression (5.9). 

9. The gradient of the Green function 

The vertical derivative, G~, of  the Green function G (x; ~j, f )  may be expressed directly in terms 
of  the function g(h,  v), as will now be shown. Following an idea used by Eggers [22] for the 
similar problem of  ship wave resistance, we express the Green function in the alternative forms 

4rrG(x;~j , f )  = -- 1/r + 1/r' + H + ( p , z ' ; f )  = -- 1/r--  1/r' + H - ( p , z ' ; f ) ,  (9.1a,b) 

where we have p = [(x _~)2 + (y  __7)211/2, Z' ----Z "1- ~, r = [p2 + (z _~,)2] 1/2, r' =(O 2 + 

z'2) 1/2 and f=eo2L /g ,  as was defined previously. Although the precise expressions for the 

functions H + (p ,  z ' ;  f )  and H -  (P, z ' ;  f )  can evidently be readily obtained from the analysis in 

the previous sections, for instance by setting e = + 0 in expressions (3.10a) and (3.10b), the 
precise forms of  these functions are actually not required here. By using equations (9.1a, b), 

we may obtain 

47r(G z - - f G )  = (-- 1/r -- 1/r')z + H ;  - - f ( - -  1/r + 1 / / )  - - f f t  +. (9.2) 

The sea-surface condition (4.3b) shows that we have G z - - f G  = 0 on z = 0 if ~" < 0. It may also 
readily be seen that -- 1/r + 1/r' = 0 on z = 0 and (1/r + 1/r')z = 0 on z = 0 if ~" < 0. It then 
follows from equation (9.2) that we have H z -- f/-/+ = 0 on z = 0 if ~" < 0. This relation how- 

ever must hold for z ~< 0, since the functions H + and H -  depend on z + ~'. We thus have Hz- -- 
fH  ÷ = 0, as may also readily be verified from equations (3.9a) and (3.9b). Equation (9.2) then 
becomes 

47r(G z - - f G )  = -- (1/r + 1/r')z + f ( 1 / r - -  1/r'). (9.3) 

By using expression (5.1) for the green function, that is 

47rG(x; ~j, f ) / f  = -- 1/fr + g(h,  v) (9.4) 

in equation (9.3), we may finally obtain 
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47rGz/fl 2 = (z - -~ ) / f2 r3  + v/d 3 -- 1/d + g ( h , v ) ,  (9.5) 

where v = f z ' ,  h =-fo, and d = f r ' ,  as was def ined previously.  Expression (9.5) for the vertical 

derivative G~ o f  the Green func t ion  was obta ined  previously by Martin [18] ,  in a di f ferent  

manner .  The hor izonta l  derivatives G x and Gy o f  the Green func t ion  G may  readily be obta ined  

by different ia t ing expression (9.4). Specifically,  we may  obta in  

G x = G p ( x - - ~ ) / p ,  Gy = G p ( y - - ~ 7 ) / p ,  (9.6a,b)  

wi th  Gp = ~G/8p given by 

47rGp/ f  2 = p / f 2 r 3  + gh(h ,  V). (9.7) 
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